On the iron oxide neutral cluster distribution in the gas phase. II. Detection through 118 nm single photon ionization.
نویسندگان
چکیده
Neutral clusters of iron oxide are created by laser ablation of iron metal and subsequent reaction of the gas phase metal atoms, ions, clusters, etc., with an O2/He mixture. The FemOn clusters are cooled in a supersonic expansion and detected and identified in a time-of-flight mass spectrometer following laser ionization at 118 nm (10.5 eV), 193 nm (6.4 eV), or 355 nm (3.53 eV) photons. With 118 nm radiation, the neutral clusters do not fragment because single photon absorption is sufficient to ionize all the clusters and the energy/pulse is approximately 1 microJ. Comparison of the mass spectra obtained at 118 nm ionization (single photon) with those obtained at 193 nm and 355 nm ionization (through multiphoton processes), with regard to intensities and linewidths, leads to an understanding of the multiphoton neutral cluster fragmentation pathways. The multiphoton fragmentation mechanism for neutral iron oxide clusters during the ionization process that seems most consistent with all the data is the loss of one or two oxygen atoms. In all instances of ionization by laser photons, the most intense features are of the forms FemOm+, FemO(m+1)+, and FemO(m+2)+, and this strongly suggests that, for a given m, the most prevalent neutral clusters are of the forms FemOm, FemO(m+1), and FemO(m+2). As the value of m increases, the more oxygen rich neutral clusters appear to increase in stability.
منابع مشابه
On the zirconium oxide neutral cluster distribution in the gas phase: detection through 118 nm single photon, and 193 and 355 nm multiphoton, ionization.
Zirconium oxide clusters are generated in the gas phase by laser ablation of the metal into a flow of ca. 5% O2/95% He at 100 psig and supersonic expansion into a vacuum chamber. Mass spectra of neutral gas phase zirconium oxide clusters are obtained through photoionization at three different laser wavelengths: 118, 193, and 355 nm. Ionization of the clusters with 118 nm laser radiation is thro...
متن کاملOn the copper oxide neutral cluster distribution in the gas phase: detection through 355 nm and 193 nm multiphoton and 118 nm single photon ionization.
The distribution of neutral copper oxide clusters in the gas phase created by laser ablation is detected and characterized through time-of-flight mass spectroscopy (TOFMS). The neutral copper oxide clusters are ionized by two different approaches: Multiphoton absorption of 355 and 193 nm radiation; and single photon absorption of 118 nm radiation. Based on the observed cluster patterns as a fun...
متن کاملOn the titanium oxide neutral cluster distribution in the gas phase: Detection through 118 nm single-photon and 193 nm multiphoton ionization.
Titanium oxide clusters are generated in a supersonic expansion by laser ablation of the metal and reaction with oxygen (0.1-6%) in He expansion gas. Mass spectra of the titanium oxide clusters are observed by photoionization with lasers of three different wavelengths: 118, 193, and 355 nm. Only the 118 nm (10.5 eV) light can ionize Ti(m)O(n) neutral clusters without fragmentation. Both the 193...
متن کاملOn the iron oxide neutral cluster distribution in the gas phase. I. Detection through 193 nm multiphoton ionization.
Iron oxide (FemOn) neutral clusters are generated in the gas phase through laser ablation of the metal and reaction with various concentrations of O2 in He. The mixture of expansion gas and neutral FemOn cluster species is expanded through a supersonic nozzle into a vacuum system, in which the clusters are ionized by an ArF excimer laser at 193 nm, and the ions are detected and identified in a ...
متن کاملInvestigation of the reactions of small neutral iron oxide clusters with methanol.
Reactions of neutral iron oxide clusters (Fe(m)O(n), m=1-2, n=0-5) with methanol (CH(3)OH) in a fast flow reactor are investigated by time of flight mass spectrometry. Detection of the neutral iron oxide cluster distribution and reaction intermediates and products is accomplished through single photon ionization by a 118 nm (10.5 eV) VUV laser. Partially deuterated methanol (CD(3)OH) is employe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 120 9 شماره
صفحات -
تاریخ انتشار 2004